cpNode System Technical Guide

Model Railroad Control Systems, LLLP

Version 2.1 09/14/2016

Introduction

The cpNode system takes the leading model railroad layout control bus, CMRInet, which has
been used by thousands of model railroaders for 30 years. The cpNode provides a communications
and control framework to model prototypical signaling systems as well as other layout automation
functions, and extends CMRInet into smaller configurations. A cpNode can provide real time
control over devices such as servos and integrated analog/digital conversion. cpNodes can be used
to extend existing CMRInet installations and for new model railroads.

The cpNode system provides an economic, simple, durable, and capable contemporary solution for
making model railroads operate like prototypes. With it, signals can be controlled by block
occupancy and turnout position information as in prototypical signaling systems. Track diagrams
(model boards) can be created with hard control panels or computer displays, providing interlocking
tower or CTC machine views of the layout. Operators can control model operations from remote
towers or local fascia control panels.

Note: This version of the System Technical Guide is for system board versions v1.6 or later.
Model Railroad Control Systems provides complete instructions for the creation of your railroad's

operating scheme, which can reflect these prototypical systems. Online information and consulting
resources are available if you need them.

Model Railroad Control Systems
www.modelrailroadcontrolsystems.com

Chuck Catania, chuck@modelrailroadcontrolsystems.com
Seth Neumann, seth@modelrailroadcontrolsystems.com

Table of Contents

1. CPNODE HARDWARE ENVIRONMENTcuvttiiieiiiutieeeeeiiitteeeeeeeiaeeeeeeeeitsseeeeeessseeeeeesesssesessessssseessesessseseesennssseens 3
2. CPNODE MODEL RAILROAD LAYOUT CONNECTION EXAMPLEcccovtiiiiiiiiiieeeeecieeeeeeeectreeeeeeeenreeeeeeeenrreeeeeeas 5
3. CPNODE ELECTRICAL REQUIREMENTSccccitiititiieeieiitreeeeeeeirreeeeeesiseeeeeeaeissseseesessssseeesesisssesesessisssssseesssssseessns 6
4., ELECTRICAL RATINGS (DC)utiiiiiiiiiiiieiiieeetieetteestteeetteestaeeeseteeesssaeessseaeassseessssaeessseaesnsseessssasansseesnsseeenssees 6
5. ARDUINO™ INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)ccocoiiiiiiiiiiitieiecieeieereeeee e 6
5.1. SETTING UP THE SOFTWARE ENVIRONMENTccottuttiiiiiiitieeeeeiireeeeeeeeitreeeeeeeeseeeeeeesssseeesessssseseeesessseseesans 6
5.2. LOADING SKETCHES INTO THE BBLEO/ARDUINO BOARDcccciiiitiiiiieeiiiiiee e et e e et eeetreeeeeeeavveeeeeen 7
6. CONNECTING A CPNODE TO CMRINET (RS-422/RS-485)ciiitiiieiiieeiiieeiiie ettt e steeeveeesreeesvveeeereesnsaeeenneas 9
7. SETTING NODE CONFIGURATION PARAMETERScceiiiiiiutiieeeeieitieeeeeeeeitreeeeeeeesrereeeeeessseeeeeessssseesensinsesesessensns 13
7.1. KERNEL SKETCH NODE CONFIGURATION SECTIONcvvtiiiiiiitieieeeeeiitreeeeeeeirrereeeeeissseeseeessseeesesssssssesessnnnns 13
7.2. CMRINET NODE ADDRESSING......ccuttiiiiiittieeeeeeiitreeeeeeiiteeeeeeeeisseeeeeeaissseeseesetssessessesisssessesssissssssessssssseeessosses 13
7.3. CMRINET (RS-422/485) LINE SPEEDccceiiiieiiuieeiitieeesirtessreeesseeeasseessssesasssesesssssessssesssssesssssssesssssssssseenes 14
8. CONFIGURING THE KERNEL SKETCH STANDARD I/O IMAPSoooiiiiiiiiieei ettt eeeaeee e e 14
9. STANDARD INPUT/OUTPUT PORT MAP CONFIGURATIONScceeiturieeeeeiiureeeeeeeirrereeeeeerrseeeeeeissseeesensissesesessennns 16
9.1, #DEFINE BASE_INODEccciuttiiiiiiitieeeeeeeeteeeeeeeeitteeeeeeeeitteeeeeeeeetaseeeeeeatssseeseeaessseseeseaastaseeeeeeassseeeseesassseeeesanses 16
9.2. #DEFINE BASE_NODE_SINSOUTcueviiiiiiiriieeieeiireeeeeeeitteeeeeeeeitseeeeeeestssseeseesasseseeseestsseseseesssseesessssseseeessnsses 16
9.3. #DEFINE BASE_NODE_SOUTSIN0etiiiiiiittiieeieiiireeeeeeiiteeeeeeeeitaeeeeeeesitsseeseeaasseseeeeesssseseeeessssessessssssseeessasses 17
94. #DEFINE BASE_NODE_T120UTAINooiiiiiiiiiiee ettt eeetat e e eeete e e e e eeataseeeeeetsaeeeeeesnseeeeeeeenees 17
9.5. #DEFINE BASE_NODE_LOINcoiiiitiiiiiiiiiiieeeeeiiteeeeeeeitteeeeeeeeitaeeeeeeeettseeeeeeeetsseseeeeeastsseeeseeissseeeeeesasseeeeesaaees 18
9.6. #DEFINE BASE_NODE_LOOUTccuviiiiiiiiiiiiiie e eecieeee e eeeiteee e e eeetteeeeeeeettaeeeeeeseasseseeeeeestsseeeeeessseeeeeeassaeeeeeaanees 18
9.7. #DEFINE BASE_NODE_RSMUCcccctttttteiiiitteeeeeeeitreeeeeeiitteeeeeeeeitssteeseeassseeseeaesseseeseestsseeseeessssssesessassseeessnsses 19
9.8. #DEFINE BASE_NODE_RSMC_LOCK ..ottt ettt eeeete e e ee ettt e e e eetaae e e e eeearaeeeeeeenees 20
10. CONFIGURING A CPNODE USING JIMRIcooiiiiiiiiiiiiiieee et ettt e e e eare e e e e e enreeeas 20
11. INPUT/OUTPUT EXPANDER (I0X) PORT MAP CONFIGURATIONScccutteiureeeereeenreresrreessseesssseeessseesssssesnnes 21
11.1. IOX INTERCONNECTIONcccieiiiuuieeeeeiiureeeeeeeeiueeeeeeeisseeeseesassseeeeeaaissssssesasasssesessessssesssentssseseessssseseessnnssssees 22
11.2. SETTING IOX BOARD ADDRESSESccuuvttieeiiiittteeeeeiiureeeeeeeisreeeeeeeisseeeseessissseseesessssesseesissesssessssessessensssses 22
11.3. INPUT/OUTPUT EXTENDER PORT IMAPSccoiiititiieiieiiiiieeeeecteeee e eeetteee e e eeetaee e e e eetaaeeeeeeearaeeeeeennreseeeeenrenens 24
11.4. IOX PORT ASSIGNMENT SKETCH CODE........cccciuttteiieiureeeeeeeiirreeeeeeiiteeeeeeesissreeeeeeessseeseesisseeseessisreseesssessses 25
11.5. IOX PORT ASSIGNMENT EXAMPLEcuvviiiiiiiiiiiiieeeeiiteeeeeeeiteeeeeeeeitteeeeeeeeteeeeeeeetsseeeeeesaseeeseeeansreseeeeennrenens 26
11.6. IOX32 PORT ASSIGNMENT EXAMPLEcccoitiiuiiiieiieiitieeeeeeieeeeeeeeeiateeeeeeeetaeeeeeeetaaeeeeeenasseeeeeeensreseeeeenreeens 27
12. CPNODE CMRINET LINE SPEED SELECTIONcettiiiiiiurieeeeeeiureeeeeeiiareeeeeeeiirsseseeeesssseeseesissesssessssseseessnssssees 28
13. LED CONNECTIONS - NOMMON ANODE/COMMON CATHODEccccvvtieeeiiirireeeeeeirreeeeeeeirreeeeeeeisreseeeeeensenens 28
13.1. WIRING COMMON ANODE/COMMON CATHODE LEDScccoviiiiiiiiiiieei et 29
14. BBLEO TO CPNODE HEADER PIN LOCATIONocoiiiiiiiiiiieeeeeiiieeeeeeeiteeeeeeeetaeeeeeeetaeeeeeeeanaeeeeeeennreseeeeennenens 31
15. RESOURCES FOR CMRINET, CPNODE, ARDUINO, JMRI.........cooiiiiiiiiiiiiieee ettt e 32

Table of Figures

FIGURE 1 CPNODE FUNCTIONAL SECTIONSceieiieittttteeeeiitteeeeeeeiiaseeeeeetireeeseeaestseseesaesssseseeesissssssessissssssessesssessesssssssseseenes 4
FIGURE 2 EXAMPLE - CPNODE MODEL RAILROAD LAYOUT CONNECTIONcoeiiiurieeiireeeereeeeeneeeeeteeeeeieeeeeneeeeseesennnesenneens 5
FIGURE 3 CPNODE ELECTRICAL SPECIFICATIONSuvvtiiiiiiiureeeeeeeiiureeeeeeiireeeeeeeeisseeseeeesssssesseesisssesssessissesesessesssessessessssesesennes 6
FIGURE 4 CMRINET INETWORKceituttteeeeiiitteeeeeieiteeeeeeesitareeeeeetisseeeseeaisseseseeaestsssseeaaassseeeeenatsseessenstssseeseesesseseeseeassseeeeennaes 9
FIGURES 3.5 MM SCREW TERMINAL CONNECTIONccoetuuttieeieiitrreeeeeeiirreeeeeeeiisseeeeeeessseeeseesisrseseeessssssseessesinsesssensisseeees 10
FIGURE6 .156" MOLEX MALE HEADER CONNECTIONccciiiiiiiuurieeeeeiitreeeeeeeiitaeeeeeeeeaneeeeeesissseseeeseisseseeeeesisnsesesessinseeesas 11
FIGURE7 .100" (2.54 MM) MOLEX KK CONNECTIONctiitteriitiriieniieeieeniteeteesiteenteesieeebeesasessseesssesseesssesnseesssesnseesssennne 12
FIGURE 8 CPNODE INPUT/OUTPUT PORT IMAPouveieieiieeeeee e eeeaee e et e et e e e et e eetaeeeenaaeeenaaeeentaeeeenneseenneeeeseeeanns 14
FIGURE 9 CPNODE IO CONFIGURATION SELECTIONccciiiuuttieeeeiitureeeeeeiiureeeeeeeiisseeeeeeessseeeseesissseseeessssssseessesissesssensisseeees 15
FIGURE 10 I2C INTERCONNET CABLE......cccciiituttieeeeiitteeeeeeeitteeeeeeeeiaeeeeeeesitreseseeeetaeeeeseestasteeeeeaiarseseeeaasseseeeeentsseeesennarreeeeas 22
FIGURE 11 I/O EXPANDER BOARD ADDRESS JUMPERSuuttiiiiiiiitttieeeeeiitteeeeeeeiteeeeeseeeaeeeeeeesitreeseeesesreeeeeeestnseeesensrreeeeas 23
FIGURE 12 1/O EXPANDER (IOX) PORT IMAPSoiiiuiiiiiiiiieeeteeeitt et e ette et e etaeeteestveeevaestseevaesaseenseessseesesssseeseessseensaesnseanns 24
FIGURE 13 1/O EXPANDER PORT ENABLE DEFINEcooiuuiiiitiieiitieeeieeeeeeeeeeeeeeeeiaeeeeeseeeeeteeeeenseessseeeantessennsesssseesenseeeennns 25
FIGURE 14 IOX PORT DIRECTION ASSIGNMENT IMAP.......cuuviiiiiiiiitiieeeeeeiiteeee e eeeetaee e e e eeeaaeeeeeeetaaeeeeeeearaeeeeeeetnreeeeeenanreeeeas 25
FIGURE 15 EXAMPLE IOX PORT DIRECTION ASSIGNMENT IMAPccoiiiiiiiiiieiiiiieieeeceeieeeeeeeetveeeeeeeeareeeeeeeetareeeeeeennneeeeas 25
FIGURE 16 JMRI DEVICE TABLE NAME EXAMPLE TOX 16 ..ociiiiiiiiiieeeeeeeeeeeee ettt e e e e e e e e e 26
FIGURE 17 JMRI DEVICE TABLE NAME EXAMPLE TOX32 .ottt ee ettt e e e e e e e e e e e e e e e 27

FIGURE 18 CMRINET LINE SPEED SELECTION.......ccuvtitieiieitteteeeeeiitrreeeeeeiisreeeeeeeiissseseseessseeeseesissssseessssssseeesesissesssensisseeees 28

FIGURE 19 LED COMMON OPTION SOLDER PAD AND CONNECTION HEADER........ccccoiiiiiiiiiiiiiieiiiieiiieeeeeeeeeeeeeeeee e e e 29
FIGURE20 LED COMMON ANODE/COMMON CATHODE CONNECTION DIAGRAMuvviiiiiiiiiiieeeeeeeeieeeeeeeeaeeeeeeeeeaeeeeas 30
FIGURE 21 BBLEO/CPNODE CONNECTION HEADER PINSooiiiiiiiiiiiiie it eeeee e eeeee e eeeaee e et eetaeeeeaneeeeneeeeneeeenns 31

1. CPNODE Hardware Environment

The cpNode motherboard consists of five functional sections.

- Arduino (BBLeo) processor board, header connectors for I/O ports, and system power.

- RS-422/485) line driver, automatic transmit enable circuit (AutoRTS), network cable
terminal pads.

- Input/output port configuration area and connection pads.

- Input/output extender (I0X) card interface (I2C serial interface).

- Optional remote stall motor controller (RSMC).

—
02
TR
o\
C
?
L1
LU

) | ® s €
| . .
i L..' .
-
ON_“‘v e
e
2 BBleo::s 8, =
* breadboard Leonardo 3} E T
by Modern Device _ \-‘ﬁ -
ANALOG 1IN © " YT AR
CND......}CNQ; !
T T » 1 .
o o5V =

L]
e, 9 T

CEEES

...1-

Page 3

RCS O

S S B & 5 BBLeo Interconnect M“ :
= » e ary 34

N 8000k ‘0{0‘0 ..
UL o

11 5665668650886 ' \
13 00000000000000 * """'."!’.’0
8 AYS)
..

Figure 1 cpNode Functional Sections

The cpNode design is focused on maximum flexibility for connecting devices (e.g. LEDs, sensors,
switches, push buttons, servos, etc.) to an Arduino microprocessor system. All connection points are
designed with .100" pad spacing to accept a wide variety of connectors and headers. Direct
soldering of wires to the pads can also be done, but is not as flexible. Screw terminal blocks are
preferred, but are the most expensive option. Male header pin strips are convenient and
inexpensive, but require a mating header with crimp pins.

Most of the cost in these systems is in the connectors, so carefully consider your requirements

and the resulting costs before choosing a connector type:

e Cost per line

* Does the connector require special tooling? What are the costs?

* Do you need connectors for rapid replacement or to “patch around” un-needed units?

* Is the connector/terminal convenient to use in the place you’ve got it mounted (e.g. upside
down under the layout)?

Page 4

2. CPNODE Model Railroad Layout Connection Example

- ———

Com 1 T e T e e e o I o S D

O WOJ E"i‘i'“ Poq

y: ESDEEM'sg'g

Route LED's
(Common Cathode)

Block @ Léo Reslstors
Occupancy .—@—

Detector Fascia
Switch 5 vdc Y

i
'

l
I
; Stall Motor
l
Turnout Stall Motor

[]

Trackside Signal (Commen Ancde)

. Contacts

Page 5

3. CPNODE ELECTRICAL REQUIREMENTS

Arduino boards can accept input supply voltages up to 12 Vdc and have onboard power regulation,
which supply 5 Vdc to the system. See the individual Arduino processor boards for exact details.

The cpNode system power required is 5-6 Vdc, at a minimum of 1 Amp. Standard wall power
supplies (wall warts) with sufficient capacity, can be used in the system. A standard 2.1 mm, center
positive, power connector is used on the Arduino processor boards.

Arduino ports configured as OUTPUT can supply 40 ma at 5 volts, however, the MAXIMUM

current, which can be supplied by the Arduino, is 160 ma. Limiting the current for LEDs to Sma
using a 680 ohm resistor per output would keep the total current within the specification,

4. ELECTRICAL RATINGS (DC)

System Input Voltage 6-12 Vdc

System Input Voltage (limits) 5-12 Vdc

cpNode Operating Voltage 5-6 Vdc

cpNode Minimum power supply current 1A

I/O pin Maximum voltage S Vdc

Maximum current per I/O pin 40 mA, sourcing or sinking
Maximum I/O port current (total) 160 mA

Optimum LED drive current per pin 5-10 mA

Figure 3 cpNode Electrical Specifications

5. ARDUINO™ Integrated Development Environment (IDE)

Software, which runs in the cpNode, is created using the Arduino Integrated Development
Environment (IDE). The software is known as a "sketch", named after the original use of the IDE at
the Interaction Design Institute in Italy.

The IDE provides software development tools and libraries used in the creation of software.
This application software is free and runs on Macintosh, Windows, and Unix. You need to use
version 1.0.5 or greater.

Kernel Sketch version 1.5 or later is compatible with all released versions of the Arduino IDE.
Note: IDE version 1.5.6-12 is recommended for Kernel sketch versions earlier than 1.5.

5.1. Setting up the Software Environment

The IDE software is located on the Arduino web site http://arduino.cc/en/Main/Software
There are versions for Windows, Macintosh OS X, and Linux. Download the version for the
operating system you are using.

Note: The cpNode uses the Modern Devices BBLeo as the Arduino. The BBLeo is a
Leonardo configuration within the supported Arduino hardware family.

Page 6

5.2. Loading Sketches Into the BBLEO/ARDUINO Board

Sketches are uploaded into the Arduino through a USB port assigned in the IDE under the
Tools menu. To load a sketch into the BBLeo:
1. Connect the BBLeo to the computer system, which runs the IDE using a mini-USB cable.

2. From the Tools -> Port menu, select the USB port connected to the BBLeo.

Auto Format 8T
Archive Sketch

Fix Encoding & Reload
Serial Monitor 0 8M

Board »

/dev/tty.usbserial-A1010D7U
/dev/cu.usbserial-A1010D7U
/dev/tty.usbmodem621 (Arduino Leonardo)
v /dev/cu.usbmodem621 (Arduino Leonardo)
/dev/tty.Bluetooth-PDA-Sync
/dev/cu.Bluetooth-PDA-Sync
/dev/tty.Bluetooth-Modem
/dev/cu.Bluetooth-Modem

Programmer
Burn Bootloader

3. From the Tools -> Board menu, select Arduino Leonardo.

Help

Auto Format ®8T
Archive Sketch

Fix Encoding & Reload
Serial Monitor 0 ¥8M

Arduino AVR Boards
Port > Arduino Yan

Arduino Uno
Arduino Duemilanove or Diecimila
Arduino Nano
Arduino Mega or Mega 2560
i Arduino Mega ADK
v Arduino Leonardo
Arduino Micro
Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT
LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor

Programmer >
Burn Bootloader

Arduino ARM (32-bits) Boards
Arduino Due (Programming Port)
Arduino Due (Native USB Port)

Page 7

4. Open the sketch code file in the IDE.

(S NeN&) cpNode_Kernel_v12 | Arduino 1.5.5
v 1)

cpNode_Kernel_v12

(S5

e Creative Commons Attribution-ShareAlike 3.9 Unported License.

This work is licensed und
Ti of the licen

o view a cop

Arduino Leonardo on /dev/cu.usbserial-A1010D7U

5. From the File menu, select Upload. The sketch will be compiled first, and then the upload

will start. The lower portion of the IDE window will show the status of the Uploading...
QG0N Edit Sketch Tools Help .

New 3N o S

Open... %0 y |
Sketchbook » OO0 O cpNode_Kernel_v12 | Arduino 1.5.5

Examples B DO E]
Close *W — :I EI El

Save 38S

Save As...

Upload Using Programmer

Page Setup
Print 3P

reati emons Attribut ShareAlik) ted Licer
t http://creativecommons.org/licenses/by-sa/3.9/deed.en US

V- =0 ~

-

Sketch uses 9,680 bytes (33%) of program storage space. Maximum is 28,672 bytes.

Global variables use 806 bytes (31%) of dynamic memory, leaving 1,754 bytes for local variables.
Maximum is 2,560 bytes.

3 Arduino Leonardo on /dev/cu.usbserial-A1010D7U

6. During the upload, the onboard red and green transmit/receive LEDs will flash indicating

proper communication between the IDE and the BBLeo. When the upload has
completed, "Done" will be displayed in the status/error portion of the IDE window.

7. Any errors, either during compilation or upload, will be displayed in the lower portion of

the IDE window. The text will be displayed in a font color other than white.

Page 8

6. Connecting a CPNODE to CMRINET (RS-422/RS-485)

The serial communication connection to all CMRInet network nodes is through a four-wire cable.
One pair of wires is for transmission, the other pair for receive. The network is defined as half-
duplex, RS-422/485. The supported network speeds are standard for serial communications, 9600,
19200, 28800, 38400, 57600, and 115200 bits per second (BPS).

The connection from the control computer to the CMRInet network is through an interface device,
which converts USB or RS-232 signals to RS-422/RS-485. In the JLC Enterprises product line is a
converter (RS485 Card). Commercially available interfaces, also known as dongles, are also usable.
US Converters (Model XS890) is one supplier of these interfaces.

Nodes in a CMRInet network are connected daisy chain fashion, node to node. The cpNode has two
connectors for connecting the cpNode to the network. The onboard connector circuit paths are in
parallel on the board. Either connector can be used for input or output.

Master {Host) Nate:
Computer

Host Transmit (Tx) connects to Node Receive (Rx)
Host Receive [Rx) connects to Node Transmit (Tx)

CMRAInet Network Connection

/ seral, 4-wire, nalt-dupiex, daisy-chain
use or’ RS-485 T1x -
Ax l :
AS-232 Card [l [l To Other Nodes

Serial . . Tx Rx | Tx Rx Tx Rx | Tx Rx Tx Rx| Tx Rx
Dongle in || Out in || Out in || Out

SMINI SMINI SMINI

SUSIC SUSIC SUSIC

cpNode cpNode cpNode

Page 9

Figure 4 CMRInet Network

cpNode 3.5 mm Screw Terminal Connection

__ 4 Conductor Cable
- —/| I‘[

 J— l
\
M" ALt ||

] -. Anﬂ'

HI- I

SHANn @ ‘ﬁ,‘.e«

!

Shield

Tx -

TX +

RAx -

RAx + 0 =
z 2 & <& &
& % " &

JLC RS-422 Interface
USB/RS-422 Interface (Dongle)

Figure 5 3.5 mm Screw Terminal Connection

There are three connection schemes available on the cpNode, 3.5 mm screw terminals, .100" header
pads, and .156 male MOLEX pins. Screw terminals facilitate direct connection of four conductor
cable, including the shield or drain wire. The drain terminal is only a tie point for the drain wire. No
connection is made to the cpNode ground plane.

Page 10

cpNode Male Header Connection

Molex .156" with CAT-5 Cable
i - —
r-.'] Hl°
3000 0F oooo.’.
mm™ -

w
Shield 2 »x % ®B &
g '+ v+
Tx -
T +
RAx - l | I I
Ax + 7
z ® 2 & &
E & & @ =

JLC RS-422 Interface
USB/RS-422 Interface (Dongle)

Figure 6 .156" MOLEX Male Header Connection

Page 11

cpNode .100" Male Header Connection
Molex KK Connector with CAT-5 cable

O 4 4

Drain 8 X x ¥ %
= L R S

TX -

TX +]

Rx - I L I l

Rx + =) - -
™ % X =< x
35S v o+ '+

JLC RS-422 Interface
USB/RS-422 Interface (Dongle)

Figure 7 .100" (2.54 mm) Molex KK Connection

The .100" header pads facilitate using male header pins and female connectors with crimp pins. A
common type of cable used with this arrangement would be CAT-5. It is advised to use two of the
wire pairs in the cable, retaining the color code of the parings. That is, keep the transmit wires
paired and the receive wires paired by their respective color code. (White/Blue, Blue/White) and,

(White/Orange, Orange/White)

Page 12

cpNodes are designed to work interchangeably with your existing JLC equipment and can be mixed
with existing SMINI and SUSIC nodes, as well as in all cpNode environments. All of your existing
CMRInet hardware will continue to work as it has in the past.

7. Setting Node Configuration Parameters

The cpNode operates in the CMRInet serial protocol environment. Each node in the network needs
to have a unique address. These addresses are in the range of O to 127. JLC Enterprises nodes, the
SMINI and SUSIC, have DIP switches on board to set the address. The cpNode address is set in the
sketch.

7.1. Kernel Sketch Node Configuration Section

There are two variables, nodelD and CMRINET_SPEED, which can be modified to set the
node address and communication line speed. These variables are located near line 106 in the
Kernel sketch.

If changes are made, be sure to Save the file.

- nodelD = 20;

CMRINET_SPEED = 96092;

Note: It is suggested to name each of the modified sketches with a name reflecting the
address and track controlled track section (e.g. Node20_Aromas). Save the modifications
using the Save As menu item.

7.2. CMRINET Node Addressing

The node address for a cpNode is stored in the sketch code, and must be set in the sketch and
uploaded into the BBLeo. The address is hard coded into the sketch in order to conserve port
bits in the cpNode. Generally, each cpNode is configured and installed for a specific track
configuration and once installed, remains in that configuration.

Using the IDE editor, change the value of the variable nodelD to the node address. The
CMRINet protocol allows for addresses from O - 127. Address 20 is the default for the
Kernel sketch.

Page 13

7.3. CMRINET (RS-422/485) Line Speed

Communication line speeds supported by CMRInet nodes are 9600, 19200, 28800, 38400,
and 57600 bits per second (BPS). Change the value of the variable CMRINET_SPEED to
one of the listed values. 9600 BPS is the default for the Kernel sketch.

8. Configuring The Kernel Sketch Standard I/0 Maps

The Kernel sketch was created as an example for implementing basic input and output port
assignments for the 16 ports on board the cpNode, and for any connected input/output expander
(IOX) boards.

Figure 7 shows the port assignment for the cpNode. cpNode ports may be configured as input or
output. Using specific IDE libraries, these ports can also be used to drive servomotors, read
potentiometer values, and provide variable output voltages.

D4 D5 D6 D7 D8 D9D10 D11

LOW BYTE

= @ﬂ@Qggg.

QOO000000

Q O O O O
O = = P e
® » N W

Figure 8 cpNode Input/Output Port Map

Page 14

The kernel sketch contains a selection of user selectable I/O configurations, which represent standard
port assignments. By selecting one of these standard configurations, the sketch code will be set up
to read and write the correct port bits from the data bytes sent from the host computer.

The standard port maps are selected in the sketch by un-commenting one of the #define statements.
Comments start with double slashes //. Remove both slashes to uncomment the line, insert two

slashes to comment the line. Only one #define can be active in the sketch.

The example shows the base node with 8 input bits, and 8 output bits selected.

#define BASE_NODE_8INBOUT

Figure 9 cpNode IO Configuration Selection

Page 15

9. Standard Input/Output Port Map Configurations

Each defined configuration provides specific port mapping functions, usable for controlling
and managing model railroad layout devices. For example, fascia control panels have
switches and buttons, which are inputs, block detectors are also inputs. Throwing turnout
motors or setting signal aspect LEDs, require outputs.

The following examples are JMRI sensor and turnout table entries. The system name prefix
is "C" for CMRInet, the devices are "T" for turnout (output) and "S" for sensor (input). The
node address is designated as "n". Node addresses are in the range of O to 127.

9.1. #DEFINE BASE_NODE

The BASE_NODE configuration defines the following:

10 output bits, D4 through D13
6 input bits, AO through AS

The configuration is designed to support one half of Centralized Traffic Control (CTC)
controlled siding. The controlled devices are three block detectors, one stall motor turnout,
one dual head mainline signal (G/Y/R)(Y/R), one single head mainline signal (G/Y/R), and
one single head low or dwarf siding signal (Y/R).

JMRI cpNode JMRI cpNode
System Name PORT System Name PORT
OUTPUTS INPUTS
CTn0O1 D4 CSn001 AO
CTn002 D5 CSn002 Al
CTn003 D6 CSn003 A2
CTn004 D7 CSn004 A3
CTn00S D8 CSn00S Ad
CTn006 D9 CSn006 AS
CTn007 D10
CTn0O0S8 D11
CTn009 D12
CTn010 D13

9.2. #DEFINE BASE_NODE_S8INS8OUT

The BASE_NODE_S8IN8OUT configuration defines the following:

8 input bits, D4 through D11
8 output bits, D12 through A5

Page 16

This configuration provides a standard 8 bits in and 8 bits out.

JMRI cpNode JMRI cpNode
System Name PORT System Name PORT
OUTPUTS INPUTS
CTn0O1 D12 CSn001 D4
CTn002 D13 CSn002 DS
CTn003 AO CSn003 D6
CTn004 Al CSn004 D7
CTn00S A2 CSn005 D8
CTn006 A3 CSn006 D9
CTn007 A4 CSn007 D10
CTn0O0S8 AS CSn008 D11

9.3. #DEFINE BASE_NODE_8OUTSIN

The BASE_NODE_8OUTSIN configuration defines the following:

8 output bits, D4 through D11
8 input bits, D12 through AS

This configuration provides a standard 8 bits in and 8 bits out, ordered with the outputs
assigned to the low order byte.

JMRI cpNode JMRI cpNode
System Name PORT System Name PORT
OUTPUTS INPUTS
CTn0O1 D4 CSn001 D12
CTn002 DS CSn002 D13
CTn003 D6 CSn003 AOD
CTn004 D7 CSn004 Al
CTn00S D8 CSn005 A2
CTn006 D9 CSn006 A3
CTn007 D10 CSn007 A4
CTn0O0S8 D11 CSn008 AS

9.4. #DEFINE BASE_NODE_120UT4IN

The BASE_NODE_120UT4IN configuration defines the following:

12 output bits, D4 through Al
4 input bits, A2 through A5

This configuration provides 12 output bits and 4 input bits. The configuration useful for
driving 3 LED signal heads, and interfacing to block detectors on modular layouts.

Page 17

JMRI cpNode JMRI cpNode
System Name PORT System Name PORT

OUTPUTS INPUTS
CTn001 D4 CSn001 A2
CTn002 D5 CSn002 A3
CTn003 D6 CSn003 Ad
CTn004 D7 CSn004 AS
CTn00S D8
CTn006 D9
CTn007 D10
CTn008 D11
CTn009 D12
CTn010 D13
CTnO11 AO
CTn012 Al

9.5. #DEFINE BASE_NODE_16IN

The BASE_NODE_16IN configuration defines the following:
16 input bits, D4 through A5
This configuration provides a standard 16 bits in.

JMRI cpNode
System Name PORT

INPUTS

CSn001 D4
CSn002 D5
CSn003 D6
CSn004 D7
CSn005 D8
CSn006 D9
CSn007 D10
CSn008 D11
CSn009 D12
CSn010 D13
CSn011 A0
CSn012 Al
CSn013 A2
CSn014 A3
CSn015 A4
CSn016 AS

9.6. #DEFINE BASE_NODE_160UT

The BASE_NODE_160UT configuration defines the following:

16 output bits, D4 through AS
This configuration provides a standard 16 bits out.

Page 18

JMRI cpNode
System Name PORT

OUTPUTS
CTn001 D4
CTn002 D5
CTn003 D6
CTn004 D7
CTn00S D8
CTn006 D9
CTn007 D10
CTn008 D11
CTn009 D12
CTn010 D13
CTn011 AOQ
CTn012 Al
CTn013 A2
CTn014 A3
CTn015 A4
CTn016 AS

9.7. #DEFINE BASE_NODE_RSMC

The BASE_NODE_RSMC configuration defines the following:

11 output bits, D4 through A0
5 input bits, Al through A5

The configuration is designed to support the onboard remote stall motor controller (RSMC)
connected on port AO. As with the BASE_NODE, the port assignments are for a Centralized
Traffic Control (CTC) controlled siding.

IMRI cpNode JMRI cpNode
System Name PORT System Name PORT

OUTPUTS INPUTS

CTn001 D4 CSn001 Al
CTn002 DS CSn002 A2
CTn003 D6 CSn003 A3
CTnO04 D7 CSn004 Ad
CTn00S5 D8 CSn00S AS
CTn006 D9

CTn007 D10

CTn008 D11

CTn009 D12

CTn010 D13

CTnO11 AO

Page 19

9.8. #DEFINE BASE_NODE_RSMC_LOCK

The BASE_NODE_RSMC_LOCK configuration defines the following:

12 output bits, D4 through A0
4 input bits, A2 through AS

The configuration is designed to support the onboard remote stall motor controller (RSMC)
connected on port A0 and a Tri-Mode Turnout Controller (TMTC) connected to port Al.

As with the BASE_NODE, the port assignments are for a Centralized Traffic Control (CTC)
controlled siding.

JMRI cpNode JMRI cpNode
System Name PORT System Name PORT
OUTPUTS INPUTS

CTn001 D4 CSn001 A2

CTn002 D5 CSn002 A3

CTn003 D6 CSn003 Ad

CTn004 D7 CSn004 AS

CTn005 D8

CTn006 DS

CTn007 D10

CTn0O08 D11

CTn00S D1z

CTn010 D13

CTn011 AD

CTn012 Al

10. CONFIGURING A CPNODE USING JMRI

A cpNode can be configured in JMRI as an SMINI or USIC/SUSIC, depending upon the total
number of input and output bytes. A cpNode system is based upon 8 bit data bytes.

For a cpNode with no IOX's, set the type to SMINI. JMRI will allocate 3 bytes for inputs and 6
bytes for outputs. As with any CMRI node defined in JMRI, you must have at least one sensor
(input) defined for the node to be polled. You can configure a cpNode with 16 outputs, but JMRI
will not poll the node. Outputs will be sent to the node when output states change in JMRI.

If you add 10Xs, it is best to configure the cpNode in JMRI as a USIC or SUSIC, with input and
output cards assigned for the total number of data bytes. The cpNode bytes are always the first two
in poll and transmit messages. IOX bytes are appended to the message after the cpNode bytes, in the
order defined in the sketch.

The rule of thumb is to count the total number of inputs and outputs in the cpNode hardware
configuration. If the number of inputs is less than or equal 3 AND the number of outputs is less than
or equal to 6, the SMINI definition will fit. Any I/O configuration greater than 3 inputs and 6
outputs, a USIC or SUSIC with 24 bit (3 bytes) or 32 bit (4 bytes) cards should be chosen.

Page 20

11. Input/Output Expander (10X) Port Map Configurations

Input/Output Expander (I0X) boards provide additional data ports that can be added to a cpNode.
These boards are attached through the 12C serial bus connector on the cpNode. This bus is four
wires and interconnects the IOX boards as a daisy chain. A chip onboard the IOX provides 16 bits
of input or output, representing two data bytes of eight bits.

IOX boards provide either 16 bits (I0X16) or 32 bits (10X32). An I0X32 is two [0OX16's packaged
together on one board. A maximum of 8 groups of 16 bits can be connected to the expander bus.
Using a mix of IOX boards, a total of 128 additional I/O bits can be added to a cpNode.

Data, which are defined as inputs, appear as bytes appended after the onboard cpNode input bytes.
The node always sends its' two input bytes regardless of the defined configuration in the sketch,
followed by any input bytes from connected I/0 expanders.

Ports, which are assigned as inputs in the Kernel sketch, are configured as INPUT_PULLUP, which
enables an internal pull-up resistor, per port in the Arduino. No external pull up resistors are needed
for inputs defined this way.

Data, which are defined as outputs, appear as bytes after the onboard cpNode output bytes are
received. The node always receives its' two output bytes regardless of the defined configuration in
the sketch.

The data stream order (sent or received) is always, two onboard data bytes followed by zero to n

IOX data bytes. The IOX data bytes are ordered by I0X board address starting the lowest address
enabled.

Page 21

11.1. IOXINTERCONNECTION

IOX boards are connected together using a four wire cable. The maximum total length of
this cable is 6 feet (2 meters). On the IOX boards, J1 and J2 are the connectors for the 12C
interconnect. 10X boards are connected in a daisy chain manner, from board to board.
An established color code for the four wires is as follows:

Pin1 Yellow 12C Serial Clock (SCL)

Pin 2 White 12C Serial Data (SDA)

Pin3 Red 12C Power (5vdc)

Pin4 Black 12C Ground

6" Female-Female Wire
Yellow Pololu #1814
White Pololu #1819
Red Pololu #1812

4 Pin Female 4 Pin Female
Pololu #181
Header 2.54mm Srb e bl Header 2.54mm
Pololu #1903 Pololu #1903
olu scL olu
SDA
5v l_)C
Gnd

12¢ Interconnect Cable

Figure 10 I2c Interconnet Cable

Note: Pololu (www .pololu.com) is one supplier of .100" headers, crimp pins, cables, and
screw terminal blocks.

11.2. Setting IOX Board Addresses

Each IOX has a set of plug jumpers, which sets the unique board address on the bus. The
address range for the IOX boards is hexadecimal 20 through 27.

Located in the lower left corner of the 10X, are the address jumper pins. By inserting a small
jumper plug, vertically as shown in the table, the board address is set. See Figure 3 for
setting these jumpers. The jumpers are designated by the vertical colored bar in the table.
An IOX32 has two addresses, starting on an even address boundary, e.g, 20,22,24,26.
Setting the lower address, left port of the IOX32, automatically sets the next higher address
for the right side of the board.

Page 22

IOX16 Board Address Jumper

ADDR20 ADDR21 ADDR22 ADDRZ23

OO0 @OO ogo xio
OO0 ®O0O O®O O
AOA1A2 AOATA2 AD ATA2 ADATA2

ADDR24 ADDR25 ADDR26 ADDR 27

cob 88 o83 838

A0 A1 A2 ADA1 A2 ADA1A2 ADA1A2

I0X Board address
jumpers located |OX32 Board Address Jumper

In the lower left .\ 021 ADDR22/23 ADDR 2425 ADDR 26727

corner of the
OO O O

Dosrcl 00 t O O 1 i %
A1 A2 A1 A2 A1 A2 A1 A2

Figure 11 I/O Expander Board Address Jumpers

Page 23

11.3. Input/Output Extender Port Maps

IOX16 Port Map

PORT B - HIGH BYTE PORT A - LOW BYTE

s saseanad [s

BOARD ADDRESS

IOX32 Port Map

PORT B - HIGH BYTE PORT A - LOW BYTE PORT B - HIGH BYTE PORT A - LOW BYTE
e] 0.0 ... B] s e s
LOW (even) BOARD ADDRESS HIGH (odd) BOARD ADDRESS

PORT B LOW ADDRESS PORT A PORT B HIGH ADDRESS PORT A

EEEEEEREEREERR RN EEEREEEREREEREER

SO0 CHO0OINSNRNSH ANV INC iO?TDOG |

Figure 12 1/0 Expander (I10X) Port Maps

Page 24

11.4. 10X Port Assignment Sketch Code

To configure the standard Kernel sketch for attached 1/O Expanders, remove the comment
slashes (//) from the #define USE_IOX statement in code.

#define USE_IOX

Figure 13 1/0 Expander Port Enable Define

Each IOX connected to a cpNode must have the port direction defined in the sketch. The
initialization code which runs at node startup time, configures each of the IOX ports, A and
B, as input or output, by defined board address.

The IOX_ioMap table has one entry for each possible IOX board and port, organized by
board address, starting with address 20. See Figure 9 for what the IOX map looks like in the
sketch code.

Each port (A or B) is assigned as input by changing the -1 to a 1, or to an output by entering
a 0 (zero). Leave unassigned ports in the table as -1.

I0OX_ioMap[maox_I10X] = { -1,-1, -1,-1, -1,-1, ~-1,-1, ~-1,-1, ~-1,-1, ~-1,-1, ~-1,-11};

Figure 14 10X Port Direction Assignment Map

An example: Two I/O expanders are attached to a cpNode. One I0X32 is set to address 20,
with port A set to input and port B set to output, and address 21 set to two outputs. One
I0X16 is set to address 22 with port A and B set to input. This is what the IOX_ioMap
table would look like:

I0X_ioMap[max_I0X] - { 1,9, o, o, 1,1, -1,-1, -1,-1, -1,-1, -1,-1, -1,-1};

Figure 15 Example 10X Port Direction Assignment Map

Page 25

11.5. 10X Port Assignment Example

The following examples are table entries, which could be used for assigning I/O expander
port bits to JMRI sensors (input) or turnouts (output). The system name prefix is "C" for
CMRInet, the devices are "T" for turnout (output) and "S" for sensor (input). The node

address is designated as "n". Node addresses are in the range of 0 to 127.

Data bytes from I/O expanders are placed into the data stream in sequential order starting
with the lowest configured IOX board address. This is true for data bytes either inbound or

outbound.

The tables shows three configuration examples; all bits are input, all bits are output, eight bits

are input and eight bits are output.

JMRI Table I0X16 JMRI Table I0X16 JMRI Table System | 10X16
System Name | Port System Name Port Name Port
ALL INPUTS ALL OUTPUTS 8 INPUTS
CSn017 DAO CTn017 DAO CSn017 DAO
CSn018 DA1 CTn018 DA1 CSn018 DA1
CSn019 DA2 CTn019 DA2 CSn019 DA2
CSn020 DA3 CTn020 DA3 CSn020 DA3
CSn021 DA4 CTn021 DA4 CSn021 DA4
CSn022 DA5 CTn022 DA5 CSn022 DA5
CSn023 DA6 CTn023 DA6 CSn023 DA6
CSn024 DA7 CTn024 DA7 CSn024 DA7
CSn025 DBO CTn025 DBO
CSn026 DB1 CTn026 DB1 8 OUTPUTS
CSn027 DB2 CTn027 DB2 CTn017 DBO
CSn028 DB3 CTn028 DB3 CTn018 DB1
CSn029 DB4 CTn029 DB4 CTn019 DB2
CSn030 DB5 CTn030 DB5 CTn020 DB3
CSn031 DB6 CTn031 DB6 CTn021 DB4
CSn032 DB7 CTn032 DB7 CTn022 DB5

CTn023 DB6
CTn024 DB7

Figure 16 JMRI Device Table Name Example 10X16

Page 26

11.6. 10X32 Port Assignment Example

JMI Table I0X32 Even JMRI Table I0X32 Even JMRI Table I0X32 Even
System Name | Board Address System Name Board Address | System Name | Board Address
ALL INPUTS ALL OUTPUTS 8 INPUTS
CSn017 DAO CTn017 A0 CSn017 A0
CSn018 DA1 CTn018 A1 CSn018 A1l
CSn019 DA2 CTn019 A2 CSn019 A2
CSn020 DA3 CTn020 A3 CSn020 A3
CSn021 DA4 CTn021 A4 CSn021 A4
CSn022 DA5 CTn022 A5 CSn022 A5
CSn023 DA6 CTn023 A6 CSn023 A6
CSn024 DA7 CTn024 A7 CSn024 A7
CSn025 DBO CTn025 BO
CSn026 DB1 CTn026 B1 8 OUTPUTS
CSn027 DB2 CTn027 B2 CTn017 BO
CSn028 DB3 CTn028 B3 CTn018 B1
CSn029 DB4 CTn029 B4 CTn019 B2
CSn030 DB5 CTn030 B5 CTn020 B3
CSn031 DB6 CTn031 B6 CTn021 B4
CSn032 DB7 CTn032 B7 CTn022 B5

CTn023 B6
CTn024 B7
I0X32 Odd I0X32 Odd I0X32 Odd
Board Address Board Address Board Address
ALL INPUTS ALL OUTPUTS 8 INPUTS
CSn033 DAO CTn033 A0 CSn025 A0
CSn034 DA1 CTn034 A1 CSn026 A1
CSn035 DA2 CTn035 A2 CSn027 A2
CSn036 DA3 CTn036 A3 CSn028 A3
CSn037 DA4 CTn037 A4 CSn029 A4
CSn038 DA5 CTn038 A5 CSn030 A5
CSn039 DA6 CTn039 A6 CSn031 A6
CSn040 DA7 CTn040 A7 CSn032 A7
CSn041 DBO CTn041 BO
CSn042 DB1 CTn042 B1 8 OUTPUTS
CSn043 DB2 CTn043 B2 CTn025 BO
CSn044 DB3 CTn044 B3 CTn026 B1
CSn045 DB4 CTn045 B4 CTn027 B2
CSn046 DB5 CTn046 B5 CTn028 B3
CSn047 DB6 CTn047 B6 CTn029 B4
CSn048 DB7 CTn048 B7 CTn030 B5
CTn031 B6
CTn032 B7

Figure 17 JMRI Device Table Name Example 10X32

Page 27

12. CPNODE CMRINET LINE SPEED SELECTION

The communication line speed on the cpNode board is selected by the values of R1 and C1. The
default values for an assembled and tested board is 12,000 ohms for R1, and .1 microFarad (uF) for
C1. A table of R1/C1 values by line speed is on the schematic. For 9600 and 19200 BPS, a value
of .1uf for C1, and a value of 12k for R1 can be used.

Note: The AutoRTS circuit will operate properly for all of the standard line speeds with 12K and
luf values.

* AutoRTS Resistor Value

BPS R1 c1
9600 12000 .1 uF
19200 6000 .1 uF
28800 3900 .1 uF
38400 3000 .1 uF
57600 2000 .1 uF
115200 1000 .1 uF

s B

K

BT T : -
Figure 18 CMRInet Line Speed Selection

13. LED Connections - Common Anode/Common Cathode

Light emitting diodes (LED) can be connected to a cpNode and I/O expanders ports defined as
OUTPUT, either as current sinking (common anode-CA) or current sourcing (common cathode-
CC). The "common" is either ground for CC or a +5 Vdc reference for CA.

The cpNode has two headers near the stall motor connector, which can be used to connect to the
LED common line. One header is labeled GND and the other LEDCom.

The customary tie point for the LED common would be the LEDCom header. A two position solder
pad jumper allows the LEDCom header to either be +5 Vdc for CA, or Gnd for CC. The default is
CA with a board trace between the center pad and the pad marked CA.

To configure the LEDCom header for common cathode, cut the trace between the center pad and the
CA pad, and put a blob of solder between the center pad and the pad marked CC.

NOTE: Be sure to completely cut the default trace, otherwise, there will be a dead short between the
board power and ground. Possible damage to the onboard components or the Arduino could occur.

Page 28

Common Anode (CA)
Common Cathode (CC)
Option Solder Pad

Figure 19 LED Common Option Solder Pad and Connection Header

13.1. Wiring Common Anode/Common Cathode LEDs

Resistors must be placed in series with the LEDs to limit the current to the device. With no
resistor, applying voltage to the LED will cause it to glow brightly once, and then burn out.

Resistor values are selected to adjust the desired brightness of the LED. A 1000 ohm resistor
is a good, safe starting value for most color LEDs. Bright White LEDs may need a larger
resistor value. 4700 ohms is a safe value to start with. The lower the value, the brighter the
display.

Note: 5 Vdc maximum on LEDs connected to cpNodes. If you need higher supply voltages
to conform to existing standards, use a CSNK breakout board connected to outputs.

While the maximum current per output port at 5 Vdc is 40 ma, the board total is 160ma, so

we recommend limiting the current to 10 ma per output. Modern designed LEDs will
operate fine at 5 ma.

To determine the value of the current limiting resistor, use the following formula called
Ohm's Law. (Voltage - LED voltage drop 1.4v) / LED Current = Resistor value.

Page 29

For example: Assume the Voltage is 3.5 volts (5v - 1.4v), an LED current of 5 ma (.005
amps). The calculation is: 3.5v/.005a = 700 ohms.

The closest standard 10% resistor value is 680 ohms. 1/4 or 1/8 watt resistors will work.

+5v

an
Die
Current
4 Limiting DO
§ § § Resistors \
DO §
+
D1 v
5 + is long lead on LED § § §
Dn #
Gnd —
Common Anode Common Cathode
Low 0=0ON High 1 =ON
High 1 = OFF Low 0= OFF
SINKING SOURCING

Figure 20 LED Common Anode/Common Cathode Connection Diagram

Page 30

14. BBLEO to CPNODE Header Pin Location

The BBLeo from Modern Devices is the Arduino style board, which connects to the cpNode
motherboard via male header pins. These pins need to be soldered into pads shown in Figure
13. The long side of the male pin needs to be facing down on the underside of the BBLeo

board.
s ‘ P

| s BBleo X o=y
2V <@’ Ofc ¥ 153 s g g?:‘ & ~
5V @ < (e breadboard Leonardo = *q
C ®|®)sv - by Modern Device “hﬂ_’ —_—
9" (©(@/soa @s ,, ANALOG IN W“

p " S on@ OGO Glcng &

OO GO G B

cpNode header pin locations shown in Red outlines.

Insert the short end of the male header from the bottom, solder on the top side. The
long end of the header faces down and mates with the tall female header on the

cpNode motherboard.

Figure 21 BBLeo/cpNode Connection Header Pins

Page 31

15. Resources For CMRInet, CPNODE, ARDUINO, JMRI

Model Railroad Control Systems (MRCS)
www.modelrailroadcontrolsystems.com
Seth Neumann, seth@modelrailroadcontrolsystems.com
Chuck Catania, chuck@modelrailroadcontrolsystems.com

Yahoo User Groups
Arduini Arduino technology for model railroading
https://groups.yahoo.com/neo/groups/Arduini/info
CMRI_users Original Computer Model Railroad Interface group
https://groups.yahoo.com/neo/groups/CMRI_Users/info
JMRIusers Java Model Railroad Interface software group
https://groups.yahoo.com/neo/groups/jmriusers/info

Official Arduino Web Site
http://arduino.cc/

Licensed Arduino Hardware Suppliers
Modern Device http://moderndevice.com/
Sparkfun https://www sparkfun.com/
AdaFruit http://www .adafruit.com/

NMRA Layout Control Specification
LCS-9.10 C/MRI Introduction v1.0 (2014.12.01)
http://www .nmra.org/sites/default/files/standards/sandrp/Other_Specifications/lcs-
9.10_cmri_intro_v1.0.pdf
LCS-9.10.1 CMRInet v1.1 (2014.12.01)
http://www .nmra.org/sites/default/files/standards/sandrp/Other_Specifications/lcs-
9.10.1_cmrinet_v1.1.pdf

Official CMRINET Web Site, Dr. Bruce Chubb, MMR
http://www .jlcenterprises.net/index.htm

SLIQ Electronics - Official CMRINET Hardware Web Site, Marc Robertson
http://sligelectronics.com/products/

Java Model Railroad Interface (JMRI) - Open Source Model Railroad Software
http://jmri.sourceforge.net/

Page 32

